САНИТАРНЫЕ НОРМЫ

2.2.4. ФИЗИЧЕСКИЕ ФАКТОРЫ ПРОИЗВОДСТВЕННОЙ СРЕДЫ 2.1.8. ФИЗИЧЕСКИЕ ФАКТОРЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ

ПРОИЗВОДСТВЕННАЯ ВИБРАЦИЯ, ВИБРАЦИЯ В ПОМЕЩЕНИЯХ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

The sanitary norms of industrial vibration, vibration of residential and public buildings

Дата введения с момента утверждения

- 1. РАЗРАБОТАНЫ Научно-исследовательским институтом медицины труда Российской Академии медицинских наук (Суворов Г.А., Прокопенко Л.В., Шкаринов Л.Н., Кравченко О.К.), Московским научно-исследовательским институтом гигиены им Ф.Ф. Эрисмана (Карагодина И.Л., Шишкина В.В.).
- 2. УТВЕРЖДЕНЫ и введены в действие Постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. N 40.
- 3. ВВЕДЕНЫ взамен "Санитарных норм и правил при работе с машинами и оборудованием, создающим локальную вибрацию, передающуюся на руки работающих" N 3041-84, "Санитарных норм вибрации рабочих мест" N 3044-84, "Санитарных норм допустимых вибраций в жилых домах" N 1304-75.

1. Область применения и общие положения

- 1.1. Настоящие Санитарные нормы устанавливают классификацию, нормируемые параметры, предельно допустимые значения производственных вибраций, допустимые значения вибраций в жилых и общественных зданиях.
- 1.2. Санитарные нормы являются обязательными для всех организаций и юридических лиц на территории Российской Федерации, независимо от форм собственности, подчинения и принадлежности, и физических лиц, независимо от гражданства.
- санитарных 1.3. Ссылки требования на норм должны быть учтены Государственных стандартах всех нормативно-технических документах, во регламентирующих конструктивные, технологические, сертификационные эксплуатационные требования к производственным объектам, жилым, общественным зданиям, технологическому, инженерному, санитарно-техническому оборудованию и машинам, транспортным средствам, бытовым приборам.
- 1.4. Ответственность за выполнение требований Санитарных норм возлагается в установленном законом порядке на руководителей и должностных лиц предприятий, учреждений и организаций, а также граждан.

- 1.5. Контроль за выполнением санитарных норм осуществляется органами и учреждениями Госсанэпиднадзора России в соответствии с Законом РСФСР "О санитарно-эпидемиологическом благополучии населения" от 19.04.91 и с учетом требований действующих санитарных правил и норм.
- 1.6. Измерение и гигиеническая оценка вибрации, а также профилактические мероприятия должны проводиться в соответствии с руководством 2.2.4/2.1.8-96 "Гигиеническая оценка физических факторов производственной и окружающей среды" (в стадии утверждения).
- 1.7. С утверждением настоящих санитарных норм утрачивают силу "Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих" N 3041-84, "Санитарные нормы вибрации рабочих мест" N 3044-84, "Санитарные нормы допустимых вибраций в жилых домах" N 1304-75.

2. Нормативные ссылки

- 2.1. Закон РСФСР "О санитарно-эпидемиологическом благополучии населения" от 19.04.91.
- 2.2. Закон Российской Федерации "Об охране окружающей природной среды" от 19.12.91.
 - 2.3. Закон Российской Федерации "О защите прав потребителей" от 07.02.92.
 - 2.4. Закон Российской Федерации "О сертификации продукции и услуг" от 10.06.93.
- 2.5. "Положение о порядке разработки, утверждения, издания, введения в действие федеральных, республиканских и местных санитарных правил, а также о порядке действия на территории РСФСР общесоюзных санитарных правил", утвержденное постановлением Совета Министров РСФСР от 01.07.91 N 375.
- 2.6. Постановление Государственного комитета санэпиднадзора России "Положение о порядке выдачи гигиенических сертификатов на продукцию" от 05.01.93 N 1.

3. Термины и определения

- 3.1. Предельно допустимый уровень (ПДУ) вибрации это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.
- 3.2. Допустимый уровень вибрации в жилых и общественных зданиях это уровень фактора, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к вибрационному воздействию.
 - 3.3. Корректированный уровень вибрации одночисловая характеристика вибрации,

определяемая как результат энергетического суммирования уровней вибрации в октавных полосах частот с учетом октавных поправок.

3.4. Эквивалентный (по энергии) корректированный уровень изменяющейся во времени вибрации - это корректированный уровень постоянной во времени вибрации, которая имеет такое же среднеквадратичное корректированное значение виброускорения и/или виброскорости, что и данная непостоянная вибрация в течение определенного интервала времени.

4. Классификация вибраций, воздействующих на человека

- 4.1. По способу передачи на человека различают:
- общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека;
 - локальную вибрацию, передающуюся через руки человека.

Примечание. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

- 4.2. По источнику возникновения вибраций различают:
- локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;
- локальную вибрацию, передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей;
- общую вибрацию 1 категории транспортную вибрацию, воздействующую на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, агрофонам и дорогам (в том числе при их строительстве). К источникам транспортной вибрации относят: тракторы сельскохозяйственные и промышленные, самоходные сельскохозяйственные машины (в том числе комбайны); автомобили грузовые (в том числе тягачи, скреперы, грейдеры, катки и т.д.); снегоочистители, самоходный горно-шахтный рельсовый транспорт;
- общую вибрацию 2 категории транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок. К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт;
- общую вибрацию 3 категории технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные

машины, электрические машины, стационарные электрические установки, насосные агрегаты и вентиляторы, оборудование для бурения скважин, буровые станки, машины для животноводства, очистки и сортировки зерна (в том числе сушилки), оборудование промышленности стройматериалов (кроме бетоноукладчиков), установки химической и нефтехимической промышленности и др.

Общую вибрацию категории 3 по месту действия подразделяют на следующие типы:

- а) на постоянных рабочих местах производственных помещений предприятий;
- б) на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;
- в) на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;
- общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий передвижных промышленных установок (при эксплуатации строгальных, гидравлических и механических прессов, вырубных И других металлообрабатывающих механизмов, поршневых компрессоров. бетономешалок. дробилок, строительных машин и др.);
- общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.
- 4.3. По направлению действия вибрацию подразделяют в соответствии с направлением осей ортогональной системы координат:
- локальную вибрацию подразделяют на действующую вдоль осей ортогональной системы координат $X_{\pi}, Y_{\pi}, Z_{\pi}$, где ось X_{π} параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.), ось Y_{π} перпендикулярна ладони, а ось Z_{π} лежит в плоскости, образованной осью X_{π} и направлением подачи или приложения силы (или осью предплечья, когда сила не прикладывается);
- общую вибрацию подразделяют на действующую вдоль осей ортогональной системы координат X_0 , Y_0 , Z_0 где X_0 (от спины к груди) и Y_0 (от правого плеча к левому) горизонтальные оси, направленные параллельно опорным поверхностям; Z_0 вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.

Направления координатных осей приведены в приложении 1.

4.4. По характеру спектра вибрации выделяют:

- узкополосные вибрации, у которых контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;
- широкополосные вибрации с непрерывным спектром шириной более одной октавы.
 - 4.5. По частотному составу вибрации выделяют:
- низкочастотные вибрации (с преобладанием максимальных уровней в октавных полосах частот 1-4 Гц для общих вибраций, 8-16 Гц для локальных вибраций);
- среднечастотные вибрации (8-16 Γ ц для общих вибраций, 31,5-63 Γ ц для локальных вибраций);
- высокочастотные вибрации (31,5-63 Γ ц для общих вибраций, 125-1000 Γ ц для локальных вибраций).
 - 4.6. По временным характеристикам вибрации выделяют:
- постоянные вибрации, для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;
- непостоянные вибрации, для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:
- а) колеблющиеся во времени вибрации, для которых величина нормируемых параметров непрерывно изменяется во времени;
- б) прерывистые вибрации, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;
- в) импульсные вибрации, состоящие из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

5. Нормируемые параметры

- 5.1. Гигиеническая оценка постоянной и непостоянной вибрации, воздействующей на человека, должна производиться следующими методами:
 - частотным (спектральным) анализом нормируемого параметра;
 - интегральной оценкой по частоте нормируемого параметра;
- интегральной оценкой с учетом времени вибрационного воздействия по эквивалентному (по энергии) уровню нормируемого параметра.
 - 5.2. Нормируемый диапазон частот устанавливается:
- для локальной вибрации в виде октавных полос со среднегеометрическими частотами: 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц;

- для общей вибрации в виде октавных или 1/3 октавных полосах со среднегеометрическими частотами: 0,8; 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0 Гц.
- 5.3. При частотном (спектральном) анализе нормируемыми параметрами являются средние квадратические значения виброскорости (v) и виброускорения (a) или их логарифмические уровни (L_v, L_a) , измеряемые в 1/1 и 1/3 октавных полосах часто т.
 - 5.3.1. Логарифмические уровни виброскорости (L_{ν}) , в дБ, определяют по формуле:

$$L_{\nu} = 20 \text{ lg } \frac{\nu}{5 \cdot 10^{-8}},$$
где

- у среднее квадратическое значение виброскорости, м/с;
- 5.10^{-8} опорное значение виброскорости, м/с.

Соотношение между логарифмическими уровнями виброскорости в д ${\rm F}$ и ее значениями в м/с приведены в приложении 2

5.3.2. Логарифмические уровни виброускорения (L_a) , в дБ, определяют по формуле:

$$L_a = 20 \lg \frac{a}{1 \cdot 10^{-6}},$$
где

- a среднее квадратическое значение виброускорения, м/c²;
- $1\cdot 10^{-6}$ опорное значение виброускорения, м/с 2

Соотношение между логарифмическими уровнями виброускорения в дБ и его значениями в m/c^2 приведены в приложении 3.

5.4. При интегральной оценке по частоте нормируемым параметром является корректированное значение виброскорости и виброускорения (U) или их логарифмические уровни (L_U) , измеряемые с помощью корректирующих фильтров или вычисляемые по формулам:

$$U = \sqrt{\sum_{i=1}^{n} (U_i \cdot K_i)^2}$$

ИЛИ

$$L_U = 10 \lg \sum_{i=1}^n 10^{0,1(L_{\overline{M}} + L_{\overline{M}})}$$
, где

- U_i , L_{Ui} среднее квадратическое значение виброскорости или виброускорения (или их логарифмические уровни) в i -ой частотной полосе;
- n число частотных полос (1/3 или 1/1 октав) в нормируемом частотном диапазоне;
- K_i , L_{ki} весовые коэффициенты для i -ой частотной полосы соответственно для абсолютных значений или их логарифмических уровней, определяемые для локальных вибраций по табл. 1, для общих вибраций по табл. 2.

Таблица 1

Значения весовых коэффициентов K_i , L_{ki} (дБ) для локальной вибрации

Среднегеометриче ские	Значения весовых коэффициентов									
частоты октавных	для вибро	для виброускорения для виброскорости								
полос, Гц	K_i	L_{ki}	K_i	L_{ki}						
8	1,0	0	0,5	-6						
16	1,0	0	1,0	0						
31,5	0,5	-6	1,0	0						
63	0,25	-12	1,0	0						
125	0,125	-18	1,0	0						

250	0,063	-24	1,0	0
500	0,0315	-30	1,0	0
1000	0,016	-36	1,0	0

5.5. При интегральной оценке вибрации с учетом времени ее воздействия по эквивалентному (по энергии) уровню нормируемым параметром является эквивалентное корректированное значение виброскорости или виброускорения $(U_{3\kappa\delta})$ или их логарифмический уровень $(L_{U3\kappa\delta})$, измеренное или вычисленное по формуле:

$$U_{\text{ske.}} = \sqrt{\frac{\sum_{i=1}^{n} U_i^2 \cdot t_i}{T}}$$

или

$$L_{U_{3K6}} = 10 \lg \left(\frac{1}{T} \sum_{i=1}^{n} 10^{0.1L_i} \cdot t_i \right)$$
, где

 U_i - корректированное по частоте значение контролируемого параметра виброскорости (v, L_v) , м/с, или виброускорения (a, L_a) , м/с 2 ;

 t_i - время действия вибрации, ч;

$$T = \sum_{j=1}^{n} t_j$$
, где

n - общее число интервалов действия вибрации.

Таблица 2

Значения весовых коэффициентов K_{i} и L_{ki} , дБ

Сред-	Общая вибрация
негео-	

метри - чески е		для виброускорения									дл	я вибр	оскорост	ГИ		
частот ы		в 1/3	3 октаве		I	в 1/1 с	октаве		в 1/3 октаве				в 1/1 октаве			
полос, Гц		Zo	X.	, Y ₀	Z	'O	X _o ,	Yo		Zo	Х	, Y _o	Z	0	Xc	,, Y _o
	K_i	\mathcal{L}_k	K_i	\mathcal{L}_k	K_i	L_k	K_i	L_k	K_i	L_{kl}	K_i	L_k	K_i	L_{k}	K_i	L_{ki}
0,8	0,45	-7	1,0	0					0,04 5	-27	0, 4	-8				
1,0	0,5	-6	1,0	0	0,5	-6	1,0	0	0,06	-24	0, 5	-6	0,045	-2 5	0, 5	-6
1,25	0,56	-5	1,0	0					0,09	-21	0, 63	-4				
1,6	0,63	-4	1,0	0					0,12 5	-18	0, 8	-2				
2,0	0,71	-3	1,0	0	0,71	-3	1,0	0	0,18 8	-15	1, 0	0	0,16	-1 6	0, 9	-1
2,5	0,8	-2	0,8	-2					0,25	-12	1, 0	0				
3,15	0,9	-1	0,63	-4					0,35	-9	1, 0	0				
4,0	1,0	0	0,5	-6	1,0	0	0,5	-6	0,5	-6	1, 0	0	0,45	-7	1, 0	0

5,0	1,0	0	0,4	-8					0,63	-4	1, 0	0				
6,3	1,0	0	0,315	-1 0					0,8	-2	1, 0	0				
8,0	1,0	0	0,25	-1 2	1,0	0	0,25	-1 2	1,0	0	1, 0	0	0,9	-1	1, 0	0
10,0	0,8	-2	0,2	-1 4					1,0	0	1, 0	0				
12,5	0,63	-4	0,16	-1 6					1,0	0	1, 0	0				
16,0	0,50	-6	0,125	-1 8	0,5	-6	0,12 5	-1 8	1,0	0	1, 0	0	1,0	0	1, 0	0
20,0	0,4	-8	0,1	-2 0					1,0	0	1, 0	0				
25,0	0,31 5	-1 0	0,08	-2 2					1,0	0	1, 0	0				
31,5	0,25	-1 2	0,063	-2 4	0,25	-1 2	0,06	-2 4	1,0	0	1, 0	0	1,0	0	1, 0	0
40,0	0,2	-1 4	0,05	-2 6					1,0	0	1, 0	0				
50,0	0,16	-1 6	0,04	-2 8					1,0	0	1, 0	0				
63,0	0,12 5	-1 8	0,031	-3 0	0,125	-1 8	0,03	-3 0	1,0	0	1, 0	0	1,0	0	1, 0	0
			5				5									
80,0	0,1	-2 0	0,025	-3 2					1,0	0	1, 0	0				

Примечание: при оценке общей вибрации категории 2 и 3 значения весовых коэффициентов для направлений \mathbb{X}_0 , \mathbb{Y}_0 принимаются равными значениям для направления \mathbb{Z}_0 .

6. Предельно допустимые значения производственной вибрации и допустимые значения вибрации в жилых и общественных зданиях

6.1. Предельно допустимые величины нормируемых параметров производственной локальной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в табл. 3.

Таблица 3

Предельно допустимые значения производственной локальной вибрации

	*∏		устимые значе $X_{\pi}, Y_{\pi}, Z_{\pi}$	ения по			
Среднегеометрически е частоты октавных полос, Гц	виброу	скорения	виброскорости				
	м/с 2	дБ	м/c·10 ⁻²	дБ			
8	1,4	123	2,8	115			
16	1,4	123	1,4	109			
31,5	2,8	129	1,4	109			
63	5,6	135	1,4	109			
125	11,0	141	1,4	109			
250	22,0	147	1,4	109			
500	45,0	153	1,4	109			

1000	89,0	159	1,4	109
Корректированные и				
эквивалентные кор-	2,0	126	2,0	112
ректированные зна-				
чения и их уровни				

^{*} Работа в условиях воздействия вибрации с уровнями, превышающими настоящие санитарные нормы более чем на 12 дБ (в 4 раза) по интегральной оценке или в какой-либо октавной полосе, не допускается.

6.2. Предельно допустимые величины нормируемых параметров вибрации рабочих мест при длительности вибрационного воздействия 480 мин (8 ч) приведены в таблицах:

```
вибрации категории 1 - транспортной вибрации - в табл.4; вибрации категории 2 - транспортно-технологической вибрации - в табл.5; вибрации категории 3 - технологической вибрации типа "а" - в табл.6; вибрации категории 3 - технологической вибрации типа "б" - в табл.7; вибрации категории 3 - технологической вибрации типа "в" - в табл.8.
```

6.3. Допустимые значения нормируемых параметров вибрации в жилых помещениях и общественных зданиях приведены в табл.9 и 10.

Таблица 4

Предельно допустимые значения вибрации рабочих мест категории 1 - транспортной

Предельно допустимые значения виброускорения

Среднегеометричес кие частоты полос, Гц		M	1/c ²		дБ					
	в 1/3	октаве	в 1/1 октаве		в 1/3	октаве	в 1/1 октаве			
	Z _o	Х,, У,	Zo	Х _о , Ү _о	Z _o	Х,, У,	Z _o	X _o , Y _o		
0,8	0,70	0,22			117	107				
1,0	0,63	0,22	1,10	0,40	116	107	121	112		
1,25	0,56	0,22			115	107				
1,6	0,50	0,22			114	107				
2,0	0,45	0,22	0,79	0,45	113	107	118	113		
2,5	0,40	0,28			112	109				
3,15	0,35	0,35			111	111				
4,0	0,32	0,45	0,56	0,79	110	113	115	118		
5,0	0,32	0,56			110	115				
6,3	0,32	0,70			110	117				
8,0	0,32	0,89	0,63	1,60	110	119	116	124		
10,0	0,40	1,10			112	121				
12,5	0,50	1,40			114	123				
16,0	0,63	1,80	1,10	3,20	116	125	121	130		

20,0	0,79	2,20			118	127		
25,0	1,00	2,80			120	129		
31,5	1,30	3,50	2,20	6,30	122	131	127	136
40,0	1,60	4,50			124	133		
50,0	2,00	5,60			126	135		
63,0	2,50	7,00	4,50	13,00	128	137	133	142
80,0	3,20	8,90			130	139		
Корректированные								
и эквивалентные								
корректированные			0,56	0,40			115	112
значения и их								
уровни								

Продолжение таблицы 4

		Пределі	ьно доп	устимые	значен	ия вибро	скорост	ТИ
Среднегеометричес кие частоты полос, Гц		м/с	10-2				дБ	
	в 1/	3 октаве	в 1/1	октаве	в 1/3	октаве	в 1/	1 октаве
	Zo	X_{o}, Y_{o}	Z_{o}	X _o , Y _o	Zo	X _o , Y _o	Zo	X_{o}, Y_{o}

0,8	14,0	4,50			129	119		
1,0	10,0	3,50	20,0	6,30	126	117	132	122
1,25	7,10	2,80			123	115		
1,6	5,00	2,20			120	113		
2,0	3,50	1,78	7,10	3,50	117	111	123	117
2,5	2,50	1,78			114	111		
3,15	1,79	1,78			111	111		
4,0	1,30	1,78	2,50	3,20	108	111	114	116
5,0	1,00	1,78			106	111		
6,3	0,79	1,78			104	111		
8,0	0,63	1,78	1,30	3,20	102	111	108	116
10,0	0,63	1,78			102	111		
12,5	0,63	1,78			102	111		
16,0	0,63	1,78	1,10	3,20	102	111	107	116
20,0	0,63	1,78			102	111		
25,0	0,63	1,78			102	111		
31,5	0,63	1,78	1,10	3,20	102	111	107	116

40,0	0,63	1,78			102	111		
50,0	0,63	1,78			102	111		
63,0	0,63	1,78	1,10	3,20	102	111	107	116
80,0	0,63	1,78			102	111		
Корректированные								
и эквивалентные								
корректированные			1,10	3,20			107	116
значения и их								
уровни								

Таблица 5

Предельно допустимые значения вибрации рабочих мест категории 2 - транспортно-технологической

Среднегеометрическ ие	Пред	ельно ,	допустим	мые зна	чения п	мкэо ог	Х _о , Ү _с	,,Z _o
частоты полос, Гц	I	виброу	скорения	I		виброс	корости	И
	м/с	2	д	5	м/с	10-2	Į	ίΡ
	1/3 okt	1/1он	с 1/3 окт	1/1о кт	1/3 okt	1/10 кт	1/3 okt	1/1о кт
1,6	0,25		108		2,50		114	

2,0	0,22	0,40	107	112	1,80	3,50	111	117
2,5	0,20		106		1,30		108	
3,15	0,18		105		0,98		105	
4,0	0,16	0,28	104	109	0,63	1,30	102	108
5,0	0,16		104		0,50		100	
6,3	0,16		104		0,40		98	
8,0	0,16	0,28	104	109	0,32	0,63	96	102
10,0	0,20		106		0,32		96	
12,5	0,25		108		0,32		96	
16,0	0,32	0,56	110	115	0,32	0,56	96	101
20,0	0,40		112		0,32		96	
25,0	0,50		114		0,32		96	
31,5	0,63	1,10	116	121	0,32	0,56	96	101
40,0	0,79		118		0,32		96	
50,0	1,00		120		0,32		96	
63,0	1,30	2,20	122	127	0,32	0,56	96	101
80,0	1,60		124		0,32		96	
Корректированные								

и эквивалентные				
корректированные	0,28	109	0,56	101
значения и их				
уровни				

Таблица 6

Предельно допустимые значения вибрации рабочих мест категории 3 - технологической типа "а"

Среднегеометрическ ие	Пред	Предельно допустимые значения по осям X_0, Y_0, Z_0						
частоты полос, Гц	В	виброус	корения	I		вибро	скорост	И
	м/0	e ²	Į	ιБ	м/с	10 ⁻²	,	дБ
	1/3 окт	1/10 кт	1/3 okt	1/1o кт	1/3 okt	1/1o кт	1/3 okt	1/1окт
1,6	0,089		99		0,89		105	
2,0	0,079	0,14	98	103	0,63	1,30	102	108
2,5	0,070		97		0,45		99	
3,15	0,063		96		0,32		96	
4,0	0,056	0,10	95	100	0,22	0,45	93	99
5,0	0,056		95		0,18		91	

6,3	0,056		95		0,14		89	
8,0	0,056	0,10	95	100	0,11	0,22	87	93
10,0	0,070		97		0,11		87	
12,5	0,089		99		0,11		87	
16,0	0,110	0,20	101	106	0,11	0,20	87	92
20,0	0,140		103		0,11		87	
25,0	0,180		105		0,11		87	
31,5	0,220	0,40	107	112	0,11	0,20	87	92
40,0	0,280		109		0,11		87	
50,0	0,350		111		0,11		87	
63,0	0,450	0,79	113	118	0,11	0,20	87	92
80,0	0,560		115		0,11		87	
Корректированные								
и эквивалентные								
корректированные		0,10		100		0,20		92
значения и их								
уровни								

Предельно допустимые значения вибрации рабочих мест категории 3 - технологической типа "б"

Среднегеометрическ ие	Пред	цельно д	цопусти	імые зна	ачения	по осям	. Χ _ο , Ί	.,Z _o
частоты полос, Гц	В	иброус	корения	I		виброс	скорост	М
	м/с	2	Į	цБ	м/с	10-2		дБ
	1/3 okt	1/1o кт	1/3 okt	1/1o кт	1/3 okt	1/1о кт	1/3 okt	1/1окт
1,6	0,035		91		0,35		97	
2,0	0,032	0,05 6	90	95	0,25	0,50	94	100
2,5	0,028		89		0,18		91	
3,15	0,025		88		0,13		88	
4,0	0,022	0,04	87	92	0,08 9	0,18	85	91
5,0	0,022		87		0,07		83	
6,3	0,022		87		0,05 6		81	
8,0	0,022	0,04	87	92	0,04 5	0,08	79	85
10,0	0,028		89		0,04		79	

					5			
12,5	0,035		91		0,04 5		79	
16,0	0,045	0,07 9	93	98	0,04 5	0,07 9	79	84
20,0	0,056		95		0,04 5		79	
25,0	0,070		97		0,04 5		79	
31,5	0,089	0,16 0	99	104	0,04 5	0,07 9	79	84
40,0	0,110		101		0,04 5		79	
50,0	0,140		103		0,04 5		79	
63,0	0,180	0,32	105	110	0,04 5	0,07 9	79	84
80,0	0,220		107		0,04		79	
Корректированные								
и эквивалентные								
корректированные		0,04		92		0,07 9		84
значения и их								
уровни								

Предельно допустимые значения вибрации рабочих мест категории 3 - технологической типа "в"

Среднегеометрическ ие	Пред	цельно д	допусти	мые зна	ачения	по осям	. Х _о , У	.,Z.
частоты полос, Гц	В	иброус	корения	I		виброс	скорост	и
	M/C	,2	Д	ιБ	м/с	10-2		дБ
	1/3 okt	1/1o кт	1/3 okt	1/1o кт	1/3 okt	1/1o кт	1/3 okt	1/1окт
1,6	0,0130		82		0,13		88	
2,0	0,0110	0,02	81	86	0,08 9	0,18	85	91
2,5	0,0100		80		0,06		82	
3,15	0,0089		79		0,04 5		79	
4,0	0,0079	0,01 4	78	83	0,03	0,06	76	82
5,0	0,0079		78		0,02		74	
6,3	0,0079		78		0,02		72	
8,0	0,0079	0,01	78	83	0,01	0,03	70	76

		4			6	2		
10,0	0,0100		80		0,01 6		70	
12,5	0,0130		82		0,01 6		70	
16,0	0,0160	0,02	84	89	0,01 6	0,02	70	75
20,0	0,0200		86		0,01 6		70	
25,0	0,0250		88		0,01 6		70	
31,5	0,0320	0,05 6	90	95	0,01 6	0,02	70	75
40,0	0,0400		92		0,01 6		70	
50,0	0,0500		94		0,01 6		70	
63,0	0,0630	0,11	96	101	0,01 6	0,02	70	75
80,0	0,0790		98		0,01 6		70	
Корректированные								
и эквивалентные								
корректированные		0,01 4		83		0,02		75
значения и их								

уровни					

Таблица 9 Допустимые значения вибрации в жилых помещениях, палатах больниц, санаториев

	Допустимые значения по осям X_{o}, Y_{o}, Z_{o}						
Среднегеометричес кие частоты полос, Гц	виброуск	сорения	виброскорости				
	$M/c^2 \cdot 10^{-3}$	дБ	м/с·10-4	дБ			
2	4,0	72	3,2	76			
4	4,5	73	1,8	71			
8	5,6	75	1,1	67			
16	11,0	81	1,1	67			
31,5	22,0	87	1,1	67			
63	45,0	93	1,1	67			
Корректированные							
и эквивалентные							
корректированные	4,0	72	1,1	67			
значения и их							

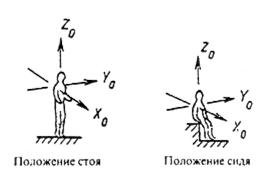
уровни	
Примечания.	1. В дневное время в помещениях допустимо превышение нормативных уровней на 5 дБ.
	2. Для непостоянной вибрации к допустимым значениям уровней, приведенным в табл. 9, вводится поправка - 10 дБ, а абсолютные значения умножаются на 0,32.
	3. В палатах больниц и санаториев допустимые уровни вибраций нужно снижать на 3 дБ.

Таблица 10 Допустимые значения вибрации в административно-управленческих помещениях и в помещениях общественных зданий

	Допустимые значения по осям X_{o} , Y_{o} , Z_{o}							
Среднегеометричес кие частоты полос, Гц	виброуск	сорения	виброскорости					
	м/с ² ·10 ⁻³	дБ	м/c·10 ⁻³	дБ				
2	10,0	80	0,79	84				
4	11,0	81	0,45	79				
8	14,0	83	0,28	75				
16	28,0	89	0,28	75				
31,5	56,0	95	0,28	75				
63	110,0	101	0,28	75				

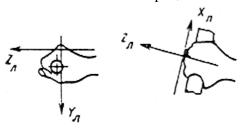
Корректированные							
и эквивалентные							
корректированные	10	80	0,28	75			
значения и их уровни							
Примечания.	1. Для непостоянной вибрации к допустимым значениям уровней, приведенным в табл.10, вводится поправка - 10 дБ, а абсолютные значения умножаются на 0,32.						

2. Для помещений школ, учебных заведений, читальных залов библиотек вводится поправка - 3 дБ.

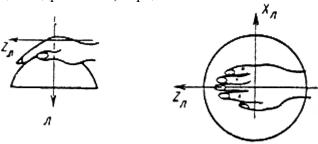

Список литературы

- 1. Суворов Г.А., Шкаринов Л.Н., Денисов Э.И. Гигиеническое нормирование производственных шумов и вибраций. М.: Медицина, 1984. 240 с.
- 2. Гигиеническая оценка физических факторов производственной и окружающей среды: Руководство 2.2.4/2.1.8.000-97 (в стадии утверждения).
- 3. Суворов Г.А., Бутковская З.М., Хунданов Л.Л. Производственная вибрация/гигиенические аспекты/. М., 1996. 72 с.
- 4. Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях: МГСН 2.04.97 (Московские городские строительные нормы). М. 37 с.

Приложение 1 (справочное)


Рис. 1. Направление координатных осей при действии вибрации

Общая вибрация



a)

Локальная вибрация

При охвате цилиндрических, торцовых и близких к ним поверхностей

При охвате сферических поверхностей б)

Приложение 2 (справочное)

Таблица П.1

Соотношение между логарифмическими уровнями виброскорости в дБ и ее значениями в м/с

Д e-	Единицы, дБ
СЯ Т-	

к и, д Б	0	1	2	3	4	5	6	7	8	9
5 0	1,6 · 10-	1,8 · 10 ⁻⁵	2,0 · 10	⁵ 2,2·10 [−]	⁵ 2,5·10 ⁻⁵	2,8 · 10 ⁻¹	3,2 · 10	⁵ 3,5·10 ⁻⁵	4,0 · 10) ⁻⁵ 4,5·10 ⁻⁵
6 0	5,0 · 10 ⁻¹	⁵ 5,6⋅10 ⁻³	['] 6,3·10 [−]	7,1·10 ⁻¹	[†] 7,9⋅10 ⁻	8,9⋅10	1,0·10 ⁻⁴	1,1 · 10 -4	1,3 - 10	⁻⁴ 1,4 · 10 ⁻⁴
7 0	1,6 · 10 ⁴	1,8 ⋅ 10 ⁻⁴	2,0 - 10	2,2 10	2,5 - 10	2,8·10 ⁻⁴	3,2 · 10	¹ 3,5·10 ^{−4}	4,0 - 10	l ⁻⁴ 4,5 · 10 ⁻⁴
8 0	5,0 ⋅10 ਾਂ	5,6⋅10 1	6,3·10 ⁻⁴	7,1 - 10 -	່ 7,9≀10ີ	* 8,9·10 ⁻⁴	1, 0 · 1 0 ⁻³	1,1·10 ⁻³	1,3 · 10	⁻³ 1,4 · 10 ⁻³
9	1,6 · 10 ⁻³	1,8 · 1 0 ⁻³	2,0·10 ⁻³	3 2,2 · 10	³ 2,5 · 10 [−]	³ 2,8·10 ⁻³	3,2 · 10	³ 3,5·10 ⁻³	4,0 · 10) ⁻³ 4,5 · 10 ⁻³
1 0 0	5,0 · 10 ⁻³	5,6·10 ⁻³	6,3 · 10 ⁻³	7,1 · 10 ⁻³	7,9·10 ⁻³	8,9·10 ⁻¹	1,0·10 ⁻²	1,1·10 ⁻²	1,3 - 10	⁻² 1,4·10 ⁻²
1 1 0	1,6 · 10 ⁻²	1,8 · 10 ⁻²	2,0 · 10 ⁻	2,2-10	² 2,5·10 ⁻¹	2,8-10-	3,2 · 10 ⁻¹	3,5 · 10 ¯	4,0-10) ⁻² 4,5 · 10 ⁻³
1 2 0	5,0 · 10 ⁻¹	5,6·10 ⁻¹	6,3 · 10 ⁻³	7,1 · 10 ⁻³	' 7,9·10 ^{–3}	8,9·10 ⁻¹	1,0.10 ⁻¹	1,1·10 ⁻¹	1,3 · 10	⁻¹ 1,4 · 10 ⁻¹
1 3 0	1,6 · 10	1,8 · 10 ⁻¹	2,0 · 10	2,2·10	¹ 2,5 · 10 ⁻	¹ 2,8·10 ⁻¹	3,2 · 10	¹ 3,5·10 ⁻¹	4,0-10	J ^{−1} 4,5·10 ^{−1}
1 4 0	5,0 · 10 ⁻¹	5,6·10 ⁻¹	6,3 · 10 ⁻¹	7,1 · 10 ⁻¹	7,9-10	8,9·10 ⁻¹	1,0	1,1	1,3	1,4

Соотношение между логарифмическими уровнями виброускорения в д ${\bf F}$ и его значениями в м/с 2

Д e						Единицы, дБ					
- с я т											
к и , Д Б	0	1	2	3	4	5	6	7	8	9	
7 0	3,2 · 10	³ 3,5·10 [−]	³ 4,0·10 ⁻	³ 4,5·10 [−]	³ 5,0·10) ⁻³ 5,6·10 ⁻³	7,0.10	³ 7,9·10 ⁻	³ 7,9·10 ⁻	³ 8,9·10 ⁻³	
8 0	1,0 · 10	² 1,1·10 ⁻²	1,3 · 10 ⁻¹	³ 1,4 · 10 [−]	² 1,6 · 10	1 ⁻² 1,8 · 10 ⁻²	2,0·10	² 2,2·10 ⁻	² 2,5·10 ⁻	2,8.10-2	
9 0	3,2 · 10	² 3,5·10 ⁻	² 4,0·10 ⁻	² 4,5·10 ⁻	³ 5,0 · 10	0 ⁻² 5, 6 · 1 0 ⁻²	6,3:10	² 7,0·10 ⁻	² 7,9·10 ⁻	² 8,9·10 ⁻²	
1 0 0	1,0 - 10-	1,1·10 ⁻¹	1,3·10 ⁻¹	1,4 · 10	1,6·10	⁻¹ 1,8 · 10 ⁻¹	2,0 · 10	1 2,2·10 ⁻	¹ 2,5·10 ⁻	¹ 2,8·10 ⁻¹	
1 1 0	3,2 · 10	¹ 3,5·10 ⁻	¹ 4,0·10 ⁻	¹ 4,5·10 ⁻	¹ 5,0 · 1	0 ⁻¹ 5,6·10 ⁻¹	6,3 · 10	¹ 7,0·10 ¹	¹ 7,9·10 ⁻	·1 8,9 · 10 ⁻¹	
1 2	1,0	1,1	1,3	1,4	1,6	1,8	2,0	2,2	2,5	2,8	

0										
1 3 0	3,2	3,5	4,0	4,5	5,0	5,6	6,3	7,0	7,9	8,9
1 4 0	1,0 · 10	1,1 · 10	1,3 · 10	1,4 · 10	1,6 · 10	1,8-10	2,0·10	2,2 · 10	2,5 · 10	2,8 · 10
1 5 0	3,2 · 10	3,5 - 10	4,0 · 10	4,5 · 10	5,0 - 11	0 5,6-10	6,3·10	7,0 · 10	7,9 - 10	8,9 · 10
1 6 0	1,0 · 10 ²	1,1 · 10 ²	1,3·10 ²	1,4 · 10 ²	1,6 - 10) ² 1,8 · 10 ²	2,0 · 10 ²	2,2 · 10 ²	2,5·10 ²	2,8 · 10 ²

Приложение 4 (рекомендуемое)

Расчет корректированных и эквивалентных корректированных значений вибрации и их уровней

- 1. Расчет корректированного уровня вибрации может производиться двумя способами:
- а) с использованием абсолютных значений вибрации, измеренных в октавных полосах частот по формуле п.5.4.;
- б) путем энергетического суммирования логарифмических уровней вибрации (в дБ) с использованием табличных значений поправок к разности слагаемых уровней.
- В табл. П.3 и П.4 даны два варианта расчета корректированного уровня производственной локальной вибрации, проведенного с использованием данных конкретных измерений.

При обработке чугунного литья рубильным молотком типа KE-16 в результате измерений уровней виброскорости в октавных полосах частот были получены следующие данные:

Таблица П.3

Пример расчета корректированного уровня виброскорости по формуле п.5.4 (вариант I)

Среднегеомет-		Абсолютные		Значение
рические частоты,	Уровни	значения		весовых коэф-
октавных полос,	виброскорост и,	виброскорости,	Обозначен ие	фициентов,
Гц	дБ	M/C		K_{i}
8	108	1,3 · 10 -2	U,	0,5
16	112	2,0 · 10 -1	U_{i}	1
31,5	120	5,0 -10 ⁻²	U_z	1
63	116	3,2 ·10 ⁻²	U_4	1
125	111	1,8 · 10 -1	$U_{\rm s}$	1
250	107	1,1 ·10-2	U_{a}	1
500	104	7,9 ·10-1	U_{γ}	1
1000	103	7,1 · 10 - 3	U_{z}	1

Требуется определить корректированное значение виброскорости. По формуле:

$$\tilde{U} = \sqrt{\sum_{i=1}^{n} (U_i \cdot K_i)^2}$$
 находим:

$$\tilde{U} = \sqrt{\left(1,3\cdot10^{-2}\right)^2\times0.5^2 + \left(2,0\cdot10^{-2}\right)^2\times1 + \left(5,0\cdot10^{-2}\right)^2\times1 + \dots} + \sqrt{\left(7,1\cdot10^{-3}\right)^2\times1} = 6,73\cdot10^{-2}_{\text{M/c}}$$

Пример расчета корректированного уровня виброскорости путем энергетического суммирования (вариант II)

Среднегео-			Корректи-			
метрические	Уровни	Значение	рованные	Дан	ные попа	арного
частоты	виброско -	весовых коэф-	октавные	энергетического		ского
октавных	рости,	фициентов,	уровни	суммирования уровней		
полос, Гц	дБ	K_{i}	виброско- рости, дБ	виброскорости с учетом поправок по табл. П		1
8	108	-6	102			
				112, 4		
16	112	0	112			
					121,9	
31,5	120	0	120			
				121, 5		
63	116	0	116			
						<u>123</u>

125	111	0	111			
				112, 5		
250	107	0	107			
250	107	0	107		110.5	
					113,5	
500	104	0	104			
				106, 5		
1000	103	0	103			

В таблице П.4 показан пример расчета корректированного уровня производственной локальной вибрации путем энергетического суммирования уровней виброскорости, измеренных в октавных полосах частот. Энергетическое суммирование уровней виброскорости производят попарно, последовательно: 102 и 112 (разность - 10 дБ), поправка по таблице П.5, равная 0,4 дБ, прибавляется к большему уровню 112 дБ, что дает 112,4 дБ; 120 и 116 (разность - 4 дБ), поправка - 1,5 дБ, сумма - 121,5 дБ и т.д. Аналогичное сложение полученных сумм дает окончательный результат в виде корректированного уровня виброскорости, равного 123 дБ.

Разность слагаемых	0	1	2	3	4	5	6	7	8	9	1 0
уровней L_1 – L_2 , дБ											
Добавка, 🕮 дБ	3	2,5	2, 2	1,8	1,5	1,2	1	0, 8	0,6	0,5	0, 4

^{2.} Расчет эквивалентного корректированного уровня вибрации. Эквивалентный по энергии корректированный уровень, являющийся одночисловой

характеристикой непостоянной вибрации, рассчитывается путем усреднения фактических уровней с учетом времени действия каждого по формуле п.5.5:

$$L_{_{986}} = 10 \text{ lg } 1/T \Big[t_1 \cdot 10^{0,1L_1} + t_2 \cdot 10^{0,1L_2} + ... + t_n \cdot 10^{0,1L_n} \Big],$$

где: $L_1, L_2, \dots L_n$ - уровни виброскорости (или виброускорения), действующие в течение времени $t_1, t_2, \dots t_n$ соответственно;

 $T = t_1 + t_2 + ... + t_n$ - общее время действия вибрации в мин или ч.

Таблица П.6

Пример расчета эквивалентного уровня вибрации

	Время действия		Уровни	Эквивалентный
Корректи-	вибрации дан-	Поправк а	виброскорос-	корректированный
рованные	ного уровня в	на время	ти с учетом	уровень виброско-
уровни	течение смены	действия	поправок на	рости, полученный
виброско-	согласно техно-	вибраци и	время	путем попарного
рости,	логическому	данного	действия	энергетического
дБ	регламенту,	уровня по	фактора,	суммирования
	Ч	табл. П.7	дБ	уровней по табл.
				П.5
108	1	-9	99	

107	2	-6	101	103,2
115	0,5	-12	103	106
110	1	-9	101	107,2
104	3	-4,2	100	<u>108</u>

Таблица П.7

Значения поправок к корректированному уровню на время действия вибрации для расчета эквивалентного уровня

Время	8	7	6	5	4	3	2	1	0,5	15	5
действия, ч										МИ Н	мин
Время в %											
от 8-часовой	100	88	75	62	60	38	25	12	6	3	1
смены											
Поправка, дБ	0	-0,6	-1, 2	-2	-3	-4, 2	-6	-9	-12	-15	-20